The History of Pinellas County’s Federal Shore Protection Project

Field Trip Guidebook for the American Shore and Beach Preservation Association (ASBPA) 2009 National Coastal Conference

St. Pete Beach, FL | October 16, 2009
Introduction

The spectacular barrier-island beaches of Pinellas County are located on Florida’s west-central coast to the north of the mouth of Tampa Bay. The Pinellas County coastline boasts 35 miles of white sand beaches that include four developed islands and five parks/preserved islands. Eleven coastal municipalities exist along the four developed islands. Thirteen of the 35 miles are restored beaches. In addition to providing storm protection, these restored beaches offer beautiful Gulf sunsets, picture-perfect weather and a unique cultural heritage that attract over 5 million overnight visitors every year. These tourists spend over $3 billion in Pinellas County annually, boosting the economy of the region (Klages, 2009). The Appendix of this guidebook provides an overview of all the barriers and inlets along the Pinellas County coastline.

Barrier islands are naturally dynamic coastal landforms. They are constantly in motion and changing as they are acted upon by daily waves, seasonal storms and long-term coastal processes. Once humans developed the islands, the shoreline position was no longer allowed to fluctuate naturally; rather, the buildings and roads drew a line in the sand beyond which the sea was not to intrude. Thus, the dynamic nature of barrier islands was realized as a beach erosion problem.

Coastal managers are tasked with managing this beach erosion and restoring the beach ecosystem in areas where it has been negatively impacted by development and erosion. When faced with coastal erosion problems, communities essentially have two options: shore protection or retreat (i.e., do something or do nothing). Like many beach communities in Florida, Pinellas County decided decades ago to protect its eroding shorelines through a federal shore protection project. The history of beach erosion that led to the federal project and the story of the segments of coastline that have been restored by the project are highlighted in this book.

Sponsorship

This guidebook and the ASBPA field trip were sponsored by Norfolk Dredging Company of Chesapeake, Virginia. Norfolk Dredging Company has recently constructed several federal renourishment projects in Pinellas County: Treasure Island/Long Key in 2004 and 2006, and Sand Key in 2005-06. Photos of their equipment constructing beaches in Pinellas County are featured prominently throughout this guide.
Regional Coastal Processes

Pinellas County is situated at the north end of the west-central Florida barrier-inlet complex, which is bounded to the north and south by marshes and mangrove marshes, respectively. This low-energy region is subjected to mean wave heights of about 0.3 m (Elko and Wang, 2007) and an average tidal range that is less than 1 m (NOAA, 2004). Dunes are also small on the natural portion of this coast, generally less than 3 m, due to low average wind speeds and low sediment supply. Along most of this region, the original dunes were removed in the process of urbanization.

The low wave height and tidal range values result in a mixed-energy coast that displays a great diversity of barrier island morphologies (Davis, 1994). Some regions exhibit classic wave-dominated barriers, with long, narrow islands and few tidal inlets, whereas other areas have short and wide, drumstick barriers with closely spaced tidal inlets. The varied morphology is a product of the relative influence of waves and tides (Davis and Hayes, 1984; Davis, 1989a) in which small changes in the influence of either parameter can result in significant changes in barrier island morphology.

Sediment along the west coast of Florida has a bimodal distribution of predominantly fine quartz sand and gravel-sized carbonate that is mostly bivalves (Davis, 1994). The siliciclastic sediment originated in the southern Appalachians and the carbonate shells are produced in situ. Presently, this is a sediment-starved system in terms of tenuginous material (Davis, 1997).

The typical weather conditions along this coast consist of prevailing breezes from the south during the summer. These summer conditions cause moderate longshore sediment transport from south to north. During the winter, cold fronts approach from the northwest about every seven to ten days. The passage of cold fronts generates relatively high-energy wind and wave conditions, with breaking wave heights of about 1 m and strong longshore sediment transport to the south. It is not uncommon for these weather conditions to persist for 48 hours or more.

Pinellas County’s Federal Beach Erosion Control Program (Shore Protection Project: SPP)

Background

Railroads brought northerners to Florida’s coastal towns in the late 19th century and the beaches were developed shortly thereafter. Modern development of Pinellas County’s barrier islands began in the 1920s when causeways were built to connect the barriers to the mainland. Early beachfront development was unregulated and often resulted in destruction of the natural dune system and construction too close to the beach. This development essentially stabilized the naturally dynamic barrier islands, resulting in a beach erosion “problem” as described in the introduction.

Even the natural barrier islands along the Pinellas County coastline often contain historical or recreational structures. Parking lots and bathhouses on Honeymoon Island and the historic Fort De Soto on Mullet Key are structures that have given way to beach erosion issues.

The combination of unregulated coastal development and the destabilization of many tidal inlets led to significant beach erosion issues in the mid-20th century. Beachfront homeowners attempted private shore protection by building seawalls and short groins. Regional sediment transport patterns were not considered in these efforts and many of the private structures were not successful. By the 1960s, much of Pinellas County’s coastline had eroded to the seawalls. No sandy beach remained along the majority of the developed shoreline.
A federal shore protection project was initiated along 100 percent of Pinellas County's developed shoreline in 1966 (see map, page 7). The project includes the developed barrier islands of Clearwater Beach, Sand Key, Treasure Island and Long Key (the latter three are the active projects). No structures were approved for inclusion in this project.

By the 1970s, beach nourishment had become the preferred method of shore protection because unlike structures, it addressed the problem of a lack of sand in the nearshore system. Beach nourishment is the process of adding sand to an eroding beach to advance the shoreline seaward. Typically, dredged sand is pumped onto an eroding beach through a pipeline and the sand is distributed by bulldozers. Beach nourishment is intended to occur at regular intervals in order to provide enough sand to curtail erosion for a certain number of years. The subsequent nourishment projects are referred to as renourishment.

Most projects involve more than simple sand placement, including rebuilding the physical dune, planting dune vegetation to stabilize the newly constructed dune and other environmental enhancements. The projects then go beyond simple beach nourishment and consist of beach restoration. The goal of beach restoration projects, like any environmental restoration project, is to approximate the natural ecosystem. Pinellas County beaches were awarded ASSPA’s Best Restored Beach in America award in 2006 for achieving this goal (Elko, 2005).

The three main benefits of beach nourishment include storm protection, recreational/tourism benefits and environmental enhancement. In terms of shore protection, the beach protects valuable infrastructure (i.e., roads and electric, cable, water and sewage service, etc.) by absorbing wave energy during storms to prevent waves from damaging upland structures. Many studies have demonstrated that wide beaches, nourished or natural, provide protection from scouring storm waves and punishing storm surge (e.g., Barker and Bodge, 2005). Tourism economics of a beach community are described in detail on page 13. Finally, restored beaches provide habitat for nesting sea turtles and shorebirds. In many locations, the beach and habitat would be totally lost without restoration.

During the last several decades, structures have developed a bad reputation due to their one-size-fits-all application in the mid-1900s. More recently, the case-by-case application of structures to erosional hot spots has proven to be a successful management technique. Nourishment remains the core of the Florida program and structures are installed sparingly, only after much study and only when nourishment alone does not control the erosion.
The county allowed this authorization to expire. The plan allowed for federal participation for the 10-year life of the project, and then the county was required to cover 100 percent of maintenance costs into perpetuity. The plan recommended in the '53 study. Because 80 percent of the four developed islands, but it also included periodic renourishment as needed along the entire shoreline of all four islands. The groins, having been constructed by local interests, were removed from the federally authorized project.

The Pinellas County portion of the funding comes from the local tourist development tax. In Pinellas County, 0.5 percent of the 5 percent tax is dedicated to beach projects and generates nearly $2 million per year. This tourist tax dedication guarantees that no local tax dollars are spent on beach nourishment.

Funding

The Pinellas County SPP is administered by the Jacksonville District U.S. Army Corps of Engineers. The typical construction cost sharing for the project is 60 percent federal (Army Corps), 20 percent state (Florida Department of Environmental Protection) and 20 percent local (Pinellas County tourist development funds). The Army Corps administers construction of the project, while Pinellas County assists with permitting, providing easements and staging areas, funding, monitoring and local management for the project.

The beaches of Sand Key (from the Clearwater segment of Sand Key to North Redington Beach), Treasure Island and Long Key (St. Pete Beach) are nourished through a federal program administered by the Jacksonville District of the U.S. Army Corps of Engineers. Pinellas County acts as the local sponsor for the program. Participation in the Shore Protection Program (SPP) ensures that our beaches are maintained at least 40 feet wide for recreation, habitat and storm protection benefits.

The History of Pinellas County's Federal Shore Protection Project

Pinellas County's original federal beach erosion control study was published in 1953 under authority of the River & Harbor Act of 1930. This Act authorized the U.S. Army Corps of Engineers to conduct shoreline erosion control studies (not construction) in cooperation with local governments. The River & Harbor Act of 1954 authorized the plan recommended in the '53 study. Because 80 percent of the beaches were privately owned at the time, the recommended federal cost share was only 5 percent. The plan allowed for federal participation for the 10-year life of the project, and then the county was required to cover 100 percent of maintenance costs into perpetuity. The county allowed this authorization to expire.

The original 1954 Beach Erosion Control Study recommended federal participation in beach nourishment along portions of the four developed islands: Clearwater, Sand Key, Treasure Island and Long Key and terminal groin construction at the south end of each island. Because Pinellas County did not adopt this project but beach erosion continued, the local municipalities constructed the recommended terminal groins on their own.

The 1962 River & Harbor Act increased the potential federal cost share to 50 percent for publicly owned shores. In response, a new Beach Erosion Control study was published in 1966. There was no change to the 10-year project life; however, the potential for 50 percent federal cost share entered the county into the federal program. The 1966 study recommended nourishment along the same portions of the four developed islands, but it also included periodic renourishment as needed along the entire shoreline of all four islands. The groins, having been constructed by local interests, were removed from the federally authorized project.

Funding

The Pinellas County SPP is administered by the Jacksonville District U.S. Army Corps of Engineers. The typical construction cost sharing for the project is 60 percent federal (Army Corps), 20 percent state (Florida Department of Environmental Protection) and 20 percent local (Pinellas County tourist development funds). The Army Corps administers construction of the project, while Pinellas County assists with permitting, providing easements and staging areas, funding, monitoring and local management for the project.

The Pinellas County portion of the funding comes from the local tourist development tax. In Pinellas County, 0.5 percent of the 5 percent tax is dedicated to beach projects and generates nearly $2 million per year. This tourist tax dedication guarantees that no local tax dollars are spent on beach nourishment.

Funding

The Pinellas County SPP is administered by the Jacksonville District U.S. Army Corps of Engineers. The typical construction cost sharing for the project is 60 percent federal (Army Corps), 20 percent state (Florida Department of Environmental Protection) and 20 percent local (Pinellas County tourist development funds). The Army Corps administers construction of the project, while Pinellas County assists with permitting, providing easements and staging areas, funding, monitoring and local management for the project.

The Pinellas County portion of the funding comes from the local tourist development tax. In Pinellas County, 0.5 percent of the 5 percent tax is dedicated to beach projects and generates nearly $2 million per year. This tourist tax dedication guarantees that no local tax dollars are spent on beach nourishment.

Funding

The Pinellas County SPP is administered by the Jacksonville District U.S. Army Corps of Engineers. The typical construction cost sharing for the project is 60 percent federal (Army Corps), 20 percent state (Florida Department of Environmental Protection) and 20 percent local (Pinellas County tourist development funds). The Army Corps administers construction of the project, while Pinellas County assists with permitting, providing easements and staging areas, funding, monitoring and local management for the project.

The Pinellas County portion of the funding comes from the local tourist development tax. In Pinellas County, 0.5 percent of the 5 percent tax is dedicated to beach projects and generates nearly $2 million per year. This tourist tax dedication guarantees that no local tax dollars are spent on beach nourishment.

Funding

The Pinellas County SPP is administered by the Jacksonville District U.S. Army Corps of Engineers. The typical construction cost sharing for the project is 60 percent federal (Army Corps), 20 percent state (Florida Department of Environmental Protection) and 20 percent local (Pinellas County tourist development funds). The Army Corps administers construction of the project, while Pinellas County assists with permitting, providing easements and staging areas, funding, monitoring and local management for the project.

The Pinellas County portion of the funding comes from the local tourist development tax. In Pinellas County, 0.5 percent of the 5 percent tax is dedicated to beach projects and generates nearly $2 million per year. This tourist tax dedication guarantees that no local tax dollars are spent on beach nourishment.
Public Access

Public beach access has been important in Pinellas County for many years. One of the more notable property acquisitions was the Tiki Gardens in what is now Indian Shores. The Tiki Gardens was a popular tourist attraction during its heyday in the 1960s and 70s. After purchasing the property in 1990, Pinellas County created one of nine public beach access parks.

With two state parks, a barrier-island preserve, nine county parks, and many municipal parking areas like Pass-a-Grille, Pinellas County has well over 12,000 beach parking spaces for the general public. The parks also ensure that all of Pinellas County’s beach restoration projects are eligible for the maximum state and federal cost share.

Beach Nourishment Construction

Pinellas County utilizes several borrow sites, the area from which sand is dredged, such as portions of the navigable channels and ebb shoals of Hurricane Pass, John’s Pass, Blind Pass and Pass-a-Grille Channel. Sediment is typically dredged from the inlets using a cutterhead suction dredge. A submerged pipeline “connects” the dredge to the nearby beach project area. Sediment is pumped through the submerged pipeline, often with the assistance of a booster pump, to the beach. The most recent cutterhead dredging project for the Pinellas County SPP was Pass-a-Grille Channel, which was dredged during the 2004 Treasure Island/Long Key beach nourishment project.

The largest borrow area in Pinellas County is the Egmont Channel Shoal. Due to its distance from the beach project areas and the shallow nearshore waters of Pinellas County, the Egmont Shoal is dredged with either a bucket or cutterhead dredge. The dredges load scows, or sand barges, which are pushed to the beach project area with tugboats. Once offshore of the beach, the scows are hooked up to an unloader that pumps the sand through a submerged pipeline to the beach. This operation was most recently conducted in 2005-06.

The Egmont Shoal is located about 3 miles due west of Fort De Soto Park (see map, page 1). This sand shoal has been dredged numerous times in the past to place high-quality beach sand on the beaches of Pinellas County. The sand meets stringent state environmental criteria. This borrow area is located far enough offshore that dredging of the shoal does not affect waves that reach the shore and does not cause beach erosion (Wang et al, 1996). There are no reef or hardbottom communities in or near this borrow area that are impacted by dredging activity.

During construction, a submerged pipeline runs from the unloader or cutterhead dredge to a landing point on the beach. Sand is pumped in a slurry of sand and water to the beach. Once the entire beach section has been nourished, the landing point and pipeline are demobilized and relocated to construct the next section. During construction, temporary sand ramps are maintained over the pipeline at regular intervals to provide safe public access to the Gulf and newly widened beach. Bulldozers redistribute the sand that is pumped to the beach to create a smooth, wide beach.
Sea Turtle Monitoring

Marine turtle nesting and hatchling occurs each year from May 1st through October 31st. Female turtles come ashore in the dark and lay 100 to 150 eggs at a time. During the course of a season, a single female lays eggs in three to eight nests. After a 45- to 70-day gestation period, hatchlings emerge from the nest at night and follow the moonlight to their nest and heading to the Gulf. Pinellas County contracts with the Clearwater Marine Aquarium to monitor sea turtle nesting along all the nourished beaches.

Clearwater Marine Aquarium staff conducting an early-morning nesting survey on a new sea turtle nest. Note the female's track in the foreground.

Over the last couple decades, turtle-nesting habitat has been restored along the developed beaches of Pinellas County. Prior to the federal project, portions of Pinellas County had no beach and thus no nesting habitat.

Environmental Monitoring

The Pinellas County Shore Protection Projects are permitted by the Florida Department of Environmental Protection. The FDEP completes a rigorous analysis of the environmental effects of each project. Adverse impacts to the surrounding islands, seagrasses, sea turtles, nearshore hardbottom or other environmental habitats, are a concern during beach nourishment projects. Pinellas County is required to prevent and/or mitigate for these potential adverse impacts. Turbidity created by the operation is monitored daily during construction. If water quality degrades, the operation is shut down. If construction occurs during nesting season, sea turtle and shorebird nesting areas are also monitored daily. The contractor must wait until getting the “All Clear!” from the monitors before beginning work each morning. Finally, nearshore mitigation reefs have been constructed during past projects to mitigate for adverse impacts to the nearshore hardbottom.

Tourism Economics

Visitors come to Pinellas County to enjoy the beach. Ninety-five percent of visitors consider the beach their #1 influential factor for choosing the area. Tourism employs more than 84,000 residents and has a $7 billion impact in direct and indirect visitor expenditures. The following example illustrates the economic value of beaches to a community by comparing the economics of Pinellas County, Fla., to that of the two neighboring counties to the north, Hernando and Pasco.

The Pinellas County Shore Protection Projects are permitted by the Florida Department of Environmental Protection. The FDEP completes a rigorous analysis of the environmental effects of each project. Adverse impacts to the surrounding islands, seagrasses, sea turtles, nearshore hardbottom or other environmental habitats, are a concern during beach nourishment projects. Pinellas County is required to prevent and/or mitigate for these potential adverse impacts. Turbidity created by the operation is monitored daily during construction. If water quality degrades, the operation is shut down. If construction occurs during nesting season, sea turtle and shorebird nesting areas are also monitored daily. The contractor must wait until getting the “All Clear!” from the monitors before beginning work each morning. Finally, nearshore mitigation reefs have been constructed during past projects to mitigate for adverse impacts to the nearshore hardbottom.

A nesting female sea turtle and hatchlings emerging from their nest and heading to the Gulf.
The drumstick barrier island model illustrates wave refraction around an ebb tidal delta and sediment attachment on the downdrift shoreline (Hayes and Kana, 1976).

Reduction of the surface area of Boca Ciega Bay from 1883 to 1997 (Davis and Barnard, 2000).

<table>
<thead>
<tr>
<th>Year</th>
<th>John's Pass</th>
<th>Blind Pass</th>
<th>Sum of Passes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1883</td>
<td>1000</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>1890</td>
<td>950</td>
<td>950</td>
<td>1900</td>
</tr>
<tr>
<td>1900</td>
<td>900</td>
<td>900</td>
<td>1800</td>
</tr>
<tr>
<td>1910</td>
<td>850</td>
<td>850</td>
<td>1700</td>
</tr>
<tr>
<td>1920</td>
<td>800</td>
<td>800</td>
<td>1600</td>
</tr>
<tr>
<td>1930</td>
<td>750</td>
<td>750</td>
<td>1500</td>
</tr>
<tr>
<td>1940</td>
<td>700</td>
<td>700</td>
<td>1400</td>
</tr>
<tr>
<td>1950</td>
<td>650</td>
<td>650</td>
<td>1300</td>
</tr>
<tr>
<td>1960</td>
<td>600</td>
<td>600</td>
<td>1200</td>
</tr>
<tr>
<td>1970</td>
<td>550</td>
<td>550</td>
<td>1100</td>
</tr>
<tr>
<td>1980</td>
<td>500</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>1990</td>
<td>450</td>
<td>450</td>
<td>900</td>
</tr>
<tr>
<td>2000</td>
<td>400</td>
<td>400</td>
<td>800</td>
</tr>
</tbody>
</table>

The geomorphology of the barriers has been modified due to natural and human intervention over the last century. The formation of John’s Pass during the hurricane of 1848 forever altered the two islands. It resulted in a significant reduction in the size and stability of Blind Pass, located 3 miles to the south and formerly called Boca Ciega Pass. John’s Pass captured a portion of the tidal prism of Boca Ciega Bay.

During the 20th century in Pinellas County, dredged sediment from the back-barrier environment was moulded to create subaerial land upon which causeways and homes were built. Causeway construction began in Boca Ciega Bay in 1926 and directed an even larger percentage of the tidal prism to John’s Pass. The causeways, which connected the barrier islands to the mainland, compartmentalized the back-barrier bays and limited open circulation of tidal flow.

Dredge-and-fill construction during the construction boom that began in the mid-1950s reduced the surface area of the back-barrier bays. This reduced the tidal prisms of the inlets. As a result of both causeway and dredge-and-fill construction prior to the 1975 Fill Act, the surface area of Boca Ciega Bay decreased by nearly 30 percent (Mehta et al., 1976). During the late 19th century, both John’s Pass and Blind Pass had similar cross-sectional areas, but by the mid-20th century, they had diverged significantly due to both natural and human intervention.
Treasure Island

This 840-acre barrier island has a population of less than 10,000, which doubles in the winter. Prior to causeway construction in the late 1920s, the only access to Treasure Island was by boat or a ferry that ran from the mainland. The first homesteader on the island purchased land from the state at a cost of $1.25/acre in 1908. The island got its name in 1918 when a shrewd real estate agent hatched a scheme to generate interest in his property. He buried two treasure chests reportedly filled with sand and a 100 lb. lead pig head split in half, which were then “discovered” by guests staying at an early hotel (Williams, 2003). The buccaneer icon has infused the island over the years. In 1985, the “World’s Largest Sand Castle,” Bluebeard’s Castle, was erected on Treasure Island’s beach.

During the latter half of the 19th century, Treasure Island evolved from a series of small islands separated by several inlets. At that time, a tidal inlet existed about ½ mile south of John’s Pass. The combined length of the islands was more than a mile shorter than the present length of the barrier. By 1926, the islands had coalesced and Treasure Island was elongating to the south due to the destabilization and southerly migration of Blind Pass.

The Treasure Island segment of the Pinellas County SPP was initially nourished in 1969. Over the years, Treasure Island has been involved in 14 federal fill placement projects and it is presently on a four-year renourishment interval. Construction of the project is combined with the Long Key segment of the SPP on the barrier to the south.

<table>
<thead>
<tr>
<th>Date</th>
<th>Volume (cubic yards)</th>
<th>Sand Source</th>
<th>Location</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1969</td>
<td>790,000</td>
<td>Offshore borrow area</td>
<td>R132-R141</td>
<td>1.8 mi</td>
</tr>
<tr>
<td>1971</td>
<td>75,000</td>
<td>O’Brien’s Lagoon</td>
<td>R131-R132</td>
<td>0.2 mi</td>
</tr>
<tr>
<td>1972</td>
<td>155,000</td>
<td>Blind Pass</td>
<td>R140-R141</td>
<td>0.2 mi</td>
</tr>
<tr>
<td>1976</td>
<td>380,000</td>
<td>Offshore borrow area</td>
<td>R135-R142</td>
<td>1.4 mi</td>
</tr>
<tr>
<td>1978</td>
<td>50,000</td>
<td>Blind Pass</td>
<td>Southern Treasure Island</td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>70,000</td>
<td>John’s Pass</td>
<td>R127-R130</td>
<td>0.6 mi</td>
</tr>
<tr>
<td>1983</td>
<td>220,000</td>
<td>Blind Pass</td>
<td>R138-R142</td>
<td>0.8 mi</td>
</tr>
<tr>
<td>1986</td>
<td>550,000</td>
<td>Blind Pass & Pass-a-Grille Channel</td>
<td>R129-R141</td>
<td>2.4 mi</td>
</tr>
<tr>
<td>1991</td>
<td>56,000</td>
<td>John’s Pass</td>
<td>R127-R129</td>
<td>0.4 mi</td>
</tr>
<tr>
<td>1996</td>
<td>51,300</td>
<td>Egmont Channel Shoal</td>
<td>R138-R141</td>
<td>0.4 mi</td>
</tr>
<tr>
<td>2000</td>
<td>350,000</td>
<td>John’s Pass</td>
<td>R127-R129 and R136-R141</td>
<td>1.6 mi</td>
</tr>
<tr>
<td>2004</td>
<td>225,000</td>
<td>Pass-a-Grille Channel</td>
<td>R136-R141</td>
<td>1 mi</td>
</tr>
<tr>
<td>2006</td>
<td>110,000</td>
<td>Egmont Channel Shoal</td>
<td>R127-R129 and R136-R141</td>
<td>1.6 mi</td>
</tr>
<tr>
<td>2009</td>
<td>225,000</td>
<td>John’s Pass</td>
<td>R127-R129 and R136-R141</td>
<td>1.6 mi</td>
</tr>
</tbody>
</table>
Sunshine Beach, on northern Treasure Island, is one of the island's original neighborhoods with multi-story condominiums juxtaposed by quaint beach cottages. The wide, mid-island beach contains most of Treasure Island's Gulf-front motels, hotels and condo-hotels. It is a commercial area with many restaurants and shops.

The geomorphology of these beaches is influenced by the John’s Pass ebb tidal delta. The ebb delta attaches to the downdrift shoreline approximately 4,000 feet south of the inlet along the wide, central portion of Treasure Island. Sunshine Beach, the downdrift beach adjacent to the inlet, receives little bypassed sand and is subsequently sediment starved. Fitzgerald refers to this version of a drumstick barrier as a humpbacked barrier (Fitzgerald, 1988).

When federally authorized dredging of John’s Pass began in 1966, over 77,000 cubic yards of dredge spoil was placed nearly four miles offshore of Sunshine Beach in a spoil site that was used to dispose of nearly 100,000 cubic yards in 1960. The material amalgamated into a huge, concave-shoreward sand bar (more than ½ mile long) and attached to the north shore of the barrier in 1968. Over the next few years, the bar consolidated and became impervious to tidal flux or overtopping by regular wave energy. Thus, a small-scale lagoon formed and was named O’Brien’s Lagoon after the Dean of the University of Florida’s coastal engineering program, M.P. O’Brien. Many of the 1971 through 1983 federal projects involved either excavating sand from or attempting to fill the lagoon.

Most recently, in August 2006, Sunshine Beach was renourished through an emergency rehabilitation nourishment to repair damages from the 2005 hurricane season at 100 percent federal cost. Sunshine Beach will be restored as part of the Treasure Island/Long Key segment of the Pinellas County SPP in the fall of 2009.
Field Trip, Stop 2

John's Pass

John's Pass, one of two inlets that connects Boca Ciega Bay to the Gulf of Mexico, was created by a hurricane in 1848. John's Pass carries the larger tidal prism and is a tide-dominated inlet with a large, asymmetrical ebb tidal delta, as well as a mature flood tidal delta that is covered with mangroves and seagrass beds. The federal navigation channel is maintained every eight years with the dredge spoil used for beach nourishment. Terminal groins have been constructed on both sides of the pass addressing the adjacent beach erosion issues.

Focus on a structure

JOHN'S PASS NORTH TERMINAL GROIN

- Date of original construction: 1961
- Initial cost: unknown (less than $300,000)
- Constructed by: City of Madeira Beach
- Date of modification: 1988
- Present length: 460 feet

History of federal dredging at John's Pass

<table>
<thead>
<tr>
<th>Date</th>
<th>Volume (cubic yards)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966</td>
<td>77,650</td>
</tr>
<tr>
<td>1979</td>
<td>80,000</td>
</tr>
<tr>
<td>1981</td>
<td>70,000</td>
</tr>
<tr>
<td>1983</td>
<td>80,000</td>
</tr>
<tr>
<td>1991</td>
<td>56,000</td>
</tr>
<tr>
<td>2000</td>
<td>390,000</td>
</tr>
<tr>
<td>2009</td>
<td>375,000</td>
</tr>
</tbody>
</table>

The original John's Pass bridge, built in 1875, was a fixed-span bridge. Prior to the 1970s, the John's Pass bridge was located approximately 700 feet to the east of its present location. Due to limited access, the fishing village on the south end of Sand Key in Madeira Beach was spawned on the west side of the bridge. This area is now the home of John's Pass Village, a popular tourist area with shops and restaurants. The latest two-span bascule bridge is presently under construction and is scheduled for completion in 2010.

The 1958 photo looks north at John's Pass prior to construction of the northern terminal groin. Note the narrow beach on the south end of Sand Key. In 1961 prior to implementation of the SPP, the City of Madeira Beach constructed the 460-foot curved terminal groin on the north side of John's Pass, which nourished the beach.

In 2000, Pinellas County constructed another terminal groin on the south side of John's Pass. John's Pass will be dredged as one of the borrow areas for the Treasure Island/Long Key segment of the Pinellas County SPP in the fall of 2009.

Aerial photos from 1999 and 2002 illustrating the construction of the southern terminal groin at John's Pass

John's Pass in 1958 with eroded beach on the north side of the inlet, and in 1965, after construction of the north terminal groin.
Stop 3
Field Trip, Stop 3
Sunset Beach

Sunset Beach is an eclectic beach neighborhood with a blend of classic Florida beach cottages and modern beachfront homes and condominiums. This beach community is nestled in Australian pines. Most of Sunset Beach, which makes up the southern third of the island, did not exist in the 1800s. After the formation of John’s Pass in 1848, Blind Pass destabilized and migrated to the south. Concurrently, a spit on the southern end of Treasure Island extended at a rapid rate of 92 feet/year (Mehta et. al, 1976) and Sunset Beach was created. The southern mile of Sunset Beach originated in this manner.

Unregulated coastal development, which included dredge-and-fill construction in the back-barrier bays, led to significant beach erosion in the mid-20th century. In an effort to curb erosion, the City of Treasure Island constructed 56 ineffective groins in 1960 along the “severely eroded beaches.” The complete lack of a beach was in direct contrast to the large volumes of sand that supplied the island during the early 1900s.

As explained earlier, the federal government authorized the Pinellas County SPP in 1966. The U.S. Army Corps of Engineers first addressed Treasure Island by publishing a General Design Memorandum in 1968. The GDM recommended the use of a shore-parallel borrow pit as the sand source for nourishment of the southern beaches. This was a common practice in the 1960s. The shore-parallel pit was a cheap and efficient way to build a beach, and it was an improvement over dredging the productive mangrove and tidal flat ecosystems in the back barrier bays. Constructed in 1969, Treasure Island was the first federal nourishment project on the west coast of Florida.

Most recently, in August 2006, Sunset Beach was renourished through an emergency rehabilitation nourishment to repair damages from the 2005 hurricane season, at 100 percent federal cost. Sunset Beach will be restored as part of the Treasure Island/Long Key segment of the Pinellas County SPP in the fall of 2009.
Long Key (St. Pete Beach)
The City of St. Pete Beach has a population of just over 10,000 with less than 30 percent of the residential units owned as second homes. The city is a popular tourist destination with more than 3,000 lodging units. The Don CeSar, Florida’s legendary “Pink Palace,” is located on central Long Key. The hotel, which opened in 1928 during the Great Gatsby era, was built to resemble the Royal Hawaiian in Waikiki Beach. On opening night, the Don CeSar hosted over 1,500 guests who paid $2.50 each to enjoy dinner and dancing. Today, it is one of only eight hotels in Florida that is listed on the National Register of Historic Places.

Long Key developed as a drumstick barrier island with a wide updrift end and a narrow downdrift end. A prograding beach ridge complex formed on the updrift end of the island. The National Ocean Service (NOS) Historic Topographic Survey Sheets (T-sheets) that were published in 1873 depict Long Key with a prograding, triangular-shaped northern end in the classic drumstick configuration. Blind Pass had a prominent ebb tidal delta that refracted wave energy resulting in onshore sediment transport illustrated by attached bars visible along the northern shoreline of Long Key.

Morphologic changes to Long Key over the last two centuries were initiated by natural events that altered the tidal regime of Blind Pass (Elko and Davis, 2006). The deterioration of Blind Pass was initiated by the hurricane of 1848 and then accelerated by anthropogenic influences. The large ebb tidal delta eroded, removing the sediment sink that caused the updrift end of the barrier to prograde (Davis, 1989). The shoreline now appears to be tending toward a straight configuration, as the island transforms from a drumstick barrier with a prograding updrift end and eroding downdrift end into a wave-dominated barrier with the opposite erosion/accretion pattern. The combined effect of terminal groins at Blind Pass, a minimal ebb shoal and periodic dredging of the inlet largely eliminated natural sand bypassing around Blind Pass. This pattern has prevented an adequate sediment supply from reaching northern Long Key.

The Long Key segment of the Pinellas County SPP was initially nourished in 1980. Upham Beach, on northern Long Key, is presently on a four-year renourishment interval. Pass-a-Grille Beach is on an eight-year renourishment interval. Construction of the project is combined with the Treasure Island segment of the SPP on the barrier to the north.
In the 1800s, Blind Pass (formerly called Boca Ciega Pass) was a well-established tidal inlet with prominent ebb and flood tidal deltas. Blind Pass began to destabilize in 1848 when John’s Pass formed three miles to the north and captured a portion of the tidal prism of Blind Pass (Mehta et al., 1976). In response to longshore sediment transport to the south, the inlet began to migrate to the south and erode the wide north end of Long Key. By 1926, the inlet had migrated over 1 kilometer. The ebb delta of Blind Pass had been forced onshore by wave energy as a result of reduced tidal flows (Elko and Davis, 2006).

Records indicate that the cities of St. Pete Beach and Treasure Island began dredging Blind Pass in 1936 when the first jetty (90 feet long) was built on the south side of the inlet. Federal dredging began in 1969 and jetty construction on both sides of the inlet continued. Despite these efforts, Blind Pass shoaled and nearly closed in 1978 due to low-energy tidal flows in the inlet and relatively high longshore transport rates from the north. Although spring tidal velocities exceed 0.8 m/s, Blind Pass is an unstable inlet evidenced by rapid shoaling that follows each dredging event (Tidwell, 2005). Presently, the inlet carries only about 5 percent of the tidal prism of Boca Ciega Bay (Becker and Ross, 1999).

After this shoaling, the jetties were raised, lengthened, and sand tightened. A detached breakwater was added to the south jetty in 1986. During this time, Blind Pass was dredged nearly every 2 ½ years. By the 1990s, the downdrift erosion at Upham Beach was seemingly unstoppable. Due to the large volumes of sand trapped by Blind Pass, the only sediment source for the downdrift beach was nourishment (Elko, 1999).

Since 1990, Blind Pass has only been dredged every nine years. As a result, Blind Pass shoals considerably between dredging events, but remains navigable. Hydrographic surveys conducted by the University of South Florida’s Coastal Research Laboratory indicate that the ebb shoal has started to reform (Wang et al., 2007). The ebb shoal protects the downdrift beach from wave energy and should eventually allow for sediment bypassing around Blind Pass. This ebb shoal come-back suggests that reducing the dredging interval improved the morphology and functionality of Blind Pass (Elko, 2006).

Blind Pass will be dredged as one of the borrow areas for the Treasure Island/Long Key segment of the Pinellas County SPP in the fall of 2009.

Field Trip, Stop 4

Blind Pass

In the 1800s, Blind Pass (formerly called Boca Ciega Pass) was a well-established tidal inlet with prominent ebb and flood tidal deltas. Blind Pass began to destabilize in 1848 when John’s Pass formed three miles to the north and captured a portion of the tidal prism of Blind Pass (Mehta et al., 1976). In response to longshore sediment transport to the south, the inlet began to migrate to the south and erode the wide north end of Long Key. By 1926, the inlet had migrated over 1 kilometer. The ebb delta of Blind Pass had been forced onshore by wave energy as a result of reduced tidal flows (Elko and Davis, 2006).

Records indicate that the cities of St. Pete Beach and Treasure Island began dredging Blind Pass in 1936 when the first jetty (90 feet long) was built on the south side of the inlet. Federal dredging began in 1969 and jetty construction on both sides of the inlet continued. Despite these efforts, Blind Pass shoaled and nearly closed in 1978 due to low-energy tidal flows in the inlet and relatively high longshore transport rates from the north. Although spring tidal velocities exceed 0.8 m/s, Blind Pass is an unstable inlet evidenced by rapid shoaling that follows each dredging event (Tidwell, 2005). Presently, the inlet carries only about 5 percent of the tidal prism of Boca Ciega Bay (Becker and Ross, 1999).

After this shoaling, the jetties were raised, lengthened, and sand tightened. A detached breakwater was added to the south jetty in 1986. During this time, Blind Pass was dredged nearly every 2 ½ years. By the 1990s, the downdrift erosion at Upham Beach was seemingly unstoppable. Due to the large volumes of sand trapped by Blind Pass, the only sediment source for the downdrift beach was nourishment (Elko, 1999).

Since 1990, Blind Pass has only been dredged every nine years. As a result, Blind Pass shoals considerably between dredging events, but remains navigable. Hydrographic surveys conducted by the University of South Florida’s Coastal Research Laboratory indicate that the ebb shoal has started to reform (Wang et al., 2007). The ebb shoal protects the downdrift beach from wave energy and should eventually allow for sediment bypassing around Blind Pass. This ebb shoal come-back suggests that reducing the dredging interval improved the morphology and functionality of Blind Pass (Elko, 2006).

Blind Pass will be dredged as one of the borrow areas for the Treasure Island/Long Key segment of the Pinellas County SPP in the fall of 2009.

Focus on a structure

BLIND PASS SOUTH TERMINAL GROIN

Date of original construction: 1937
Initial cost: unknown
Constructed by: City of St. Pete Beach
Date of modifications: 1974, 1986, 2006
Present length: 520 feet
Upham Beach has been considered a “feeder beach” by the U.S. Army Corps of Engineers. When nourished sand erodes from Upham Beach, it is transported to the south, thereby feeding the beaches along the rest of the island. In an effort to slow the erosion at Upham Beach, the Geotextile T-Head Groin Project was constructed in 2006. The project design included nourishment with over 320,000 cubic yards of sand, five geotextile T-head groins, and the closing of the jetty/breakwater gap on the south side of Blind Pass. The goal of the project was to maintain a 40-foot-wide beach while avoiding downdrift erosion of the pre-construction beach (Elko and Mann, 2005). The groins were intended to maintain the beach, increase the interval between nourishment projects and allow for the use of Blind Pass as the lone sediment source for future nourishment projects.

Upham Beach will be restored as part of the Treasure Island/Long Key segment of the Pinellas County SPP in the fall of 2009.
Pass-a-Grille, on southern Long Key, was one of the first established towns along Florida’s west coast barrier islands and it retains its historical charm. Pass-a-Grille contains a one-mile-long public beach with no development on the west side of Gulf Way. The community was named for the Cuban fishermen, known as “Grillers,” who would smoke their catch along the water’s edge. When boating through the pass, their fires were visible on the beaches, hence Pass-A-Grille. In 1911, State Legislation declared Pass-A-Grille a town and twenty-one residents voted in the first election.

Astonishing erosion occurred on Pass-a-Grille Beach in the 1940s and 50s. Historical postcards illustrate the total loss of a 500-foot-wide beach. In an effort to curb this erosion, the city constructed groins, a seawall and a terminal groin in 1965.

The wide beach that accreted due to the structure was stabilized with sea oats in the late 1980s. Today, the beach has been restored to nearly the same width as the early 20th century beach. Pass-a-Grille Beach has received emergency nourishment twice. The beach was restored in October 1986 following the passage of Hurricane Elena in 1985. Another post-storm fill placement occurred in 2004 following that hurricane season (Elko, 2005).

Pass-a-Grille Beach will be restored as part of the Treasure Island/Long Key segment of the Pinellas County SPP in 2013.

Field Trip, Stop 6

Pass-a-Grille Beach on southern Long Key in 1936 and 1959

<table>
<thead>
<tr>
<th>Date</th>
<th>Volume (cubic yards)</th>
<th>Sand Source</th>
<th>Location</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>73,000</td>
<td>Pass-a-Grille Channel</td>
<td>R160-R165</td>
<td>1 mi</td>
</tr>
<tr>
<td>1991</td>
<td>100,000</td>
<td>Blind Pass</td>
<td>R160-R165</td>
<td>1 mi</td>
</tr>
<tr>
<td>2004</td>
<td>95,000</td>
<td>Pass-a-Grille Channel</td>
<td>R160-R165</td>
<td>1 mi</td>
</tr>
</tbody>
</table>

History of the Pass-a-Grille Beach (south Long Key) segment of the Pinellas County SPP

Postcards of Pass-a-Grille Beach in the early 1990s, illustrating the dune revegetation project

Postcard of Pass-a-Grille Beach in 2006

Pass-a-Grille Beach in 2006

The terminal groin constructed at the south end of Long Key in 1965

Same building

Focus on a structure

PASS-A-GRILLE CHANNEL NORTH TERMINAL GROIN

Date of original construction: 1959
Initial cost: unknown
Constructed by: City of St Pete Beach
Date of modifications: 1962, 1984
Present length: 430 feet

Postcard of Pass-a-Grille Beach on southern Long Key in 1936 and 1959
Although Congressman Bill Young, Senator Dennis Jones and the late Jim Terry have already been mentioned in the History section, it is worth noting their contributions to the Pinellas County Shore Protection Project again. In addition, the following people have made significant contributions to the success of the Pinellas County program: U.S. Army Corps of Engineers staff who have managed the project over the years, such as Richard Bonner, Rick McMillen, Jackie Keiser, Rene Perez and Tom Martin; Florida Department of Environmental Protection staff, such as Phil Flood, Paden Woodruff, Catherine Florko and Ralph Clark; the academics who initiated many of the studies for projects that were ultimately constructed, such as Per Brunn, Robert Dean, Richard A. Davis Jr. and Ping Wang; the FSBPA's Stan Tait and Debbie Flack; the Pinellas County Board of County Commissioners and the Pinellas County Convention & Visitors Bureau; the elected officials from local municipalities from Clearwater to St. Pete Beach, such as George Cretekos; the Clearwater Marine Aquarium and the Pinellas County residents and business owners who have contributed to the success of the project, such as Nick Fritsch and Carl Hall. The 2009 ASBPA field trip was sponsored by Norfolk Dredging Company, who has professionally constructed several federal beach renourishment projects throughout Pinellas County in the last several years.

References

Williams, B.L., 2003. The Treasure Island Story. www.ci.treasure-island.fl.us
Appendix: Pinellas County’s barrier islands & tidal inlets

Pinellas County is located on the low-energy west-central Florida coast, at the north end of a barrier island chain that is bounded to the north and south by marshes. The county’s coastline offers over 35 miles of fine, white sandy beaches on eleven barrier islands along the Gulf of Mexico. The barriers and tidal inlets in the county are listed below from north to south. For more details see www.pinellascounty.org/beach.

Anclote Key
This barrier contains the Anclote Key State Preserve and the Anclote National Wildlife Refuge. Pinellas County does not manage the beaches of Anclote Key. Geologic studies indicate that Anclote Key is approximately 2,000 years old. This November 2005 photo looks north at the south end of Anclote Key.

Howard Park
The man-made beach at Howard Park, dedicated in 1966, was most recently renourished in 2002 with nearly 7,000 cubic yards of truck-hauled sand. Beach vegetation and two new sidewalks were also installed during this project. This October 2002 photo looks north with the Anclote River in the background.

Three Rooker Bar
This island started as a sand shoal, building up over the last couple decades. The area is very popular with boaters and birds. This photo looks north along the bar in November 2005.

Honeymoon Island
Shoreline restoration projects on this state park are conducted through a partnership between Pinellas County and the Florida Department of Environmental Protection. The most recent restoration project, which included nourishment and a T-head erosion control structure, was completed in early 2008. This photo looks north in April 2008.

Hurricane Pass
This inlet separates Honeymoon Island and Caladesi Island, providing boating access between St. Joseph Sound and the Gulf of Mexico. Created by the Hurricane of 1921, the inlet is dredged periodically by Pinellas County, and the dredge spoil is placed as nourished sand on Honeymoon Island or Dunedin Causeway.

Caladesi Island
One of the few pristine barrier islands in Pinellas County, this island is accessible by boat or by foot from the south where it is connected to Clearwater Beach Island.

Dunedin Pass
Dunedin Pass shoaled and closed in the late 1980s. Studies have shown that reopening the pass through dredging would be costly and detrimental to the physical and biological ecosystems that have developed over the last couple decades.

Clearwater Beach Island
Clearwater Beach is a popular vacation destination with beautiful sugary sand. After an interesting history of coastal management, the island’s beaches do not presently require nourishment.

Clearwater Pass
Clearwater Pass is an important inlet for recreational boaters in northern Pinellas County. Two long jetties prevent the inlet from shoaling.
Sand Key
At about 14 miles, Sand Key is the longest barrier island in Pinellas County. Nine coastal municipalities occupy this island. After suffering from decades of erosion, the federal segment of the Pinellas County Beach Erosion Control program began in 1985. The most recent federal renourishment was constructed in 2005-06 and the next project is scheduled for 2010-11.

John’s Pass
John’s Pass is a federally maintained inlet that is dredged periodically by the U.S. Army Corps of Engineers. The most recent project was conducted in 2000 when dredge spoil was pumped onto Treasure Island as beach nourishment. The ongoing Florida Department of Transportation John’s Pass bridge replacement is scheduled for completion in 2009.

Treasure Island
Treasure Island has two erosional hot spots, Sunshine and Sunset beaches, on the north and south ends of the island, respectively. The Pinellas County Beach Erosion Control program has maintained these beaches since 1969. In contrast, the wide, central beach on Treasure Island accretes slowly due to sediment bypassing around the large ebb delta of John’s Pass. The City of Treasure Island’s emergency plan allows for “sand sharing” from the wide beach to the erosional areas after a major storm, if necessary.

Blind Pass
Blind Pass has more structural modifications than any inlet on the west coast of Florida. The inlet is dredged periodically to nourish the downdrift beach (Upham Beach), most recently in 2000. The gap in the south breakwater was closed in 2005. The next dredging of Blind Pass is scheduled for 2009.

Long Key
Long Key is the technical name for the island that contains the City of St. Pete Beach. The major erosional hot spot on Long Key is Upham Beach, on the north end of the island. Pass-a-Grille Beach, on southern Long Key, also requires periodic renourishment. The Pinellas County Beach Erosion Control program has maintained these beaches since 1960. Five geotextile T-head groins were installed on Upham Beach in 2005 as an experimental project intended to slow the rapid erosion.

Pass-a-Grille Channel
This inlet forms part of the Egmont Channel tidal delta complex. Modifications in the early 1960s to Pass-a-Grille Channel included dredging and the construction of the terminal groin and seawall at the south end of Long Key. Dredged material from Pass-a-Grille Channel was placed on Long Key in 1986 and 2004.

Shell Key
Shell Key began as two separate sand shoals that have built up and merged since the 1950s. The island is now managed by Pinellas County’s Department of Environmental Management. This photo looks north in November 2005.

Bunces Pass
This beautiful natural tidal inlet between Shell Key and Mullet Key has limited boating access due to two fixed (16-foot) bridges. This tide-dominated inlet forms part of the Egmont Channel tidal delta complex. The ebb tidal delta contains distinct channel-margin linear bars as shown on the right side of the photo.

Mullet Key
The barrier island containing Pinellas County’s Fort De Soto Park has a right-angle formation with one shoreline exposed to the Gulf of Mexico and the other shoreline exposed to Egmont Channel. A restoration project was constructed in 2006 that involved placement of beneficial-use material from the dredging of the Tampa Bay shipping channel. The L-shaped terminal groin, originally built in the 1960s, was also rehabilitated. This photo looks north along the Gulf of Mexico of Mullet Key shoreline in April 2006.

Egmont Key
Egmont Key, located at the mouth of Tampa Bay, is actually located in Hillsborough County. The beaches of Egmont Key are not managed by Pinellas County. Much of this island, which is managed by the Florida Park Service, is a wildlife refuge.