Subject:
Ratification of a Grant Application with the Florida Department of Environmental Protection (FDEP) for Design and Construction of the Lake Seminole Sediment Removal Project – Out of Cycle Request
County PID No. 000157A

Department: Public Works
Staff Member Responsible: Kelli Levy, Division Manager

Recommended Action:
I RECOMMEND THE BOARD OF COUNTY COMMISSIONERS (BOARD) RATIFY, CONFIRM AND ENTER INTO THE MINUTES A GRANT APPLICATION WITH FDEP, PREVIOUSLY APPROVED BY THE COUNTY ADMINISTRATOR, FOR DESIGN AND CONSTRUCTION OF THE LAKE SEMINOLE SEDIMENT REMOVAL PROJECT – OUT OF CYCLE REQUEST.

Summary Explanation/Background:
The grant application request was submitted to FDEP to provide funding in the amount of $2,000,000 for the Lake Seminole Sediment Removal Project. The grant application was submitted to FDEP outside of their normal cycle for the opportunity to obtain remaining funds that were not utilized by other jurisdictions. The FDEP obtains a certain amount of money each year from the U.S. Environmental Protection Agency (USEPA) for these types of projects. Lake Seminole is part of an overall environmental restoration effort, and is currently listed by the FDEP and USEPA as an impaired waterbody. The primary purpose of the project is to remove nutrient rich sediments that are degrading water quality.

Due to a firm deadline for submission of the grant applications, staff requested the County Administrator approve the grant application to FDEP in order to expedite the process by the April 17, 2015 due date. Should the application be determined eligible, feasible and subsequently funded, the FDEP Agreement will be brought to the Board for approval. The FDEP Agreement will secure the funding and define responsibilities for the project.

Fiscal Impact/Cost/Revenue Summary:
There is no fiscal impact to the County with the submission of this grant application. Should funding be approved for this project, the County will match the grant funding of $2,000,000 for a total of $4,000,000.

Exhibits/Attachments Attached:
FDEP Application Request Approved by the County Administrator on March 30, 2015
Grant Application Intent to Apply Form
Email Approval from Office of Management & Budget Dated March 17, 2015
Location Map
Delegated Authority Memorandum

TO: Mark S. Woodard, County Administrator
THROUGH: David E. Scott, P.E., Assistant County Administrator
FROM: Richard L.V. Coates, III, P.E., Director, Public Works
DATE: March 27, 2015
SUBJECT: Intent to Apply for a Grant with the Florida Department of Environmental Protection (FDEP) for the Lake Seminole Sediment Removal Project – Out of Cycle Request County PID No. 000157A

Recommended Action:
Recommend the County Administrator approve the intent to apply for a grant with FDEP for the Lake Seminole Sediment Removal Project due to the availability of surplus out of cycle earmarked funds.

Approval of this item exceeds the authority of the County Administrator; however, submission of the application is due to FDEP by April 17, 2015. Staff will follow-through with submission of a ratification memo to the Pinellas County Board of County Commissioners immediately following approval of this item.

Summary:
Lake Seminole is currently listed by the FDEP and the U.S. Environmental Protection Agency (USEPA) as an impaired waterbody pursuant to Section 303(d) of the federal Clean Water Act. This project is part of an overall environmental restoration effort and the last phase of the Lake Seminole Reasonable Assurance Plan. The primary purpose of the project is to remove nutrient rich sediments that are degrading water quality.

Background/Explanation:
County staff is submitting this FDEP Intent to Apply grant application request to provide funding in the amount of $2,000,000 for the Lake Seminole Sediment Removal Project. The current engineer’s project estimate is $28,500,000. The County currently has a 50 percent match commitment from SWFWMD up to $17,135,424 in project costs (i.e. $8,567,712 SWFWMD/$8,567,712 County). This $2,000,000 grant would be applied to the funding needs over and above the $17,135,424 amount.

Please return a scanned copy of the approved delegated memo to Merry Celeste, Engineering & Technical Support and retain the original for filing on a future receipt and file report.

Fiscal Impact:
There is no fiscal impact to the County with the submission of this Intent to Apply grant application. Should funding be approved for this project, the County will match the grant funding of $2,000,000 for a total of $4,000,000.

Delegated Authority:
N/A
Attachments:
Grant Application
Intent to Apply Form
Email Approval from Office of Management & Budget Dated March 17, 2015

Recommendation Approved: [Signature]
Mark S. Woodard, County Administrator
Date: 3/30/15
Attachment 1 – 319 GRANT APPLICATION for SHORT TERM PROJECTS

PART I – PROJECT INFORMATION

PROJECT NAME: Lake Seminole Restoration Project

PROJECT TYPE (Check One): (\checkmark) Urban (\checkmark) Agricultural (\checkmark) Education Only (\checkmark) OSTDS (\checkmark) Other (describe)

PROJECT FUNDING REQUEST: $2,000,000.00
MATCH COMMITMENT: $2,000,000.00
PROJECT COST: $28,500,000.00

LEAD ORGANIZATION: Pinellas County Public Works

CONTACT INFORMATION:
Name: Kelli Hammer Levy
Street Address: 22211 US Hwy 19 N Bldg 10
City, State, Zip: Clearwater FL, 33765
Tel: 727.464.3317
Fax: 727.464.4403
Email: klevy@pinellascounty.org

FINANCIAL COOPERATING PARTNERS:
Southwest Florida Water Management District for $8,567,712.00

PROJECT LOCATION AND WATERSHED CHARACTERISTICS:
Geographic Location (city and county): Municipalities of Largo and Seminole in Pinellas County
Size of Project Impact: 695 Acres (687 Acres of Lake and 8 Acres of Upland Project Site
Size of Area Being Treated: 685 Acres
Latitude (decimal degrees): -82.781869
Longitude (decimal degrees): 27.858203
Name of Impaired Water Body Affected: Lake Seminole
Water Body ID of Impaired Water Body Affected (WBID): 1618
TMDL Status and Name: Nutrients (nitrogen and phosphorus), assessed as category 4b due to the FDEP approved Reasonable Assurance Plan to address the impairment
TMDL Impairment; indicate the parameters in the TMDL: Nutrients (nitrogen and phosphorus)
Impairments To Be Addressed by Project: Nutrients (nitrogen and phosphorus)
Does this project fall within the boundaries of a developing or adopted BMAP or within a Nine Element Watershed Plan approved by EPA. Check one of the following:

- Adopted BMAP
- Developing BMAP
- EPA Approved Watershed Plan

If any of the above are checked please complete the following:

BMAP or Watershed Plan Name:
- Lake Seminole Watershed Management Plan (2001)
- Lake Seminole Reasonable Assurance Plan (Original 2007, Updates 2011 and 2014)

This project contributes to pollutant reductions specified in the BMAP or Watershed Plan.

- Yes
- No
LAND USE and STATUS:

Land Uses of the Area Being Treated
The area being treated is the area that is contributing runoff to the treatment system.

- = Empty cell/information to be inserted

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Acres</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Low Density (1100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Residential Medium Density (1200)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Residential High Density (1300)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Commercial and Services (1400)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Industrial (1500)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Extractive (1600)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Institutional (1700)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Recreational (1800)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Open Land (1900)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Agriculture (2000)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Upland Non-Forested (3000)</td>
<td>8</td>
<td>1.1</td>
</tr>
<tr>
<td>Upland Forests (4000)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Water (5000)</td>
<td>687</td>
<td>98.9</td>
</tr>
<tr>
<td>Wetlands (6000)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Barren Land (7000)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transportation, Communication, and Utilities (8000)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Land Use Totals (Acreage and %) 695 100%

Land Ownership Status: (check one)
- Land necessary for the construction of treatment infrastructure has been acquired.
 Title is held by: Pinellas County BOCC
- Land necessary for the construction of treatment infrastructure is under a legal option to buy (please provide documentation of the option-to-buy and funding to execute the purchase).
- Land necessary for the construction of treatment infrastructure is under an easement which allows for the construction and access.
PROJECT OVERVIEW: Please provide information for each of the 5 items below; item 6 is optional. Please be very thorough when completing the information.

1. Description of only the grant funded and match commitment activities:

Provide a detailed description of all activities and BMPs the grant and match funding will be used for, including but not limited to: description of each BMP, type of BMP(s), size of each BMP, number/type of structures in each BMP, education activities, etc.

Provide sufficient detail so that the project evaluators will know exactly what is being constructed/implemented and how it will function. For treatment trains, include how the BMPs are connected and function as a train.

As indicated above, do not include activities funded outside of the grant and committed match amounts.

The primary purpose of the project is to remove nutrient rich sediments present within the lake that have been linked to its nutrient related impairment. Lake Seminole is a highly eutrophic lake that is currently listed by the Florida Department of Environmental Protection (FDEP) and the U.S. Environmental Protection Agency (USEPA) as an impaired waterbody pursuant to Section 303(d) of the federal Clean Water Act. The pollutants linked to the impairment are nutrients (phosphorus and nitrogen) that are present at elevated levels in the lake’s water column. The Lake Seminole Restoration Project is an important element of the Lake Seminole Reasonable Assurance Plan (RAP) (2007, updated 2011 and 2014), which provides a framework for addressing the Lake Seminole impairment.

A goal of the project during development of the engineering plans was to optimize the sediment removal activities by minimizing overcut and avoiding dredging in areas of thin sediment accumulation (up to 12 inches) and where the sediments include a low amount of organic material. It was considered that those areas do not represent significant sources of nutrients into the water column. The plans show the existing top of the sediment layer, the estimated location of the lake sandy bottom, and the extent of the planned sediment removal. The estimated volume of in-situ sediment to be removed from Lake Seminole for this grant amounts to be approximately 200,000 CY.

The Contractor will clear and grub the site, set up their dewatering equipment, prepare the site for processing the material, install stormwater features required by permit, and create a return water pond. This work will be covered under clearing and grubbing and mobilization pay items with the overall goal being to create a worksite that will effectively and efficiently allow for the dewatering and disposal of the dredged material.

During the design phase hydraulic dredging was selected as the preferred option. In general, the hydraulic dredging equipment consists of a hydraulic dredge that excavates and pumps material from within a lake through a temporary pipeline (typically high-
density polyethylene) to an offsite location. The dredge functions as a floating vacuum cleaner that can remove lake-bottom sediments with reasonable precision. Control of dredging depth and sediment disturbance occur by various configurations of the suction head, ranging from a rotating cutter or auger to a shielded intake port. Hydraulic dredging is an unobtrusive method that requires no disturbance of the shoreline and it is the preferred method for this application. The hydraulic dredge anticipated for this project uses a non-rotating “suction head” in place of a more conventional cutter head. This is an important consideration for excavating muck and fine sand. The dredged slurry will be pumped through a pipeline, using a barge-mounted booster pump and land-based sled-mounted diesel-powered booster pump, to the sediment dewatering area.

The barge-mounted dredge will consist of a “ladder” assembly supporting the suction head and discharge pipe, a pump that will move the material from the dredge to the dewatering area, and an operator responsible for maintaining suction head contact with the sediment while minimizing overcut volume. The ladder is raised and lowered by a pulley system suspended from an “A”-frame. Diesel engine driven pumps are recommended for the dredge and slurry transport system.

Dredge movement will consist of side-to-side sweeping motions as dredging advances through the sediment. The dredge will move in parallel paths for a pre-determined distance as shown on the plans. Each “cut-line” will be offset the width of the sweep from the previous line to maximize sediment removal. A suction head hydraulic dredge has proved effective for other lake dredging projects managed by AMEC and is expected to perform as well in Lake Seminole.

The dewatering facility for the project will be constructed at a site located along the eastern shore of the southern lobe of the lake. The site is owned by Pinellas County and was formerly utilized as a plant nursery. A portion of the site houses office, garage, and ancillary storage facilities utilized by county parks maintenance crews. This portion of the site will be excluded from activities associated with the project.

The dewatering system for the project will consist of three primary steps; (1) screening of dredge inflow to remove large trash and debris, (2) removal of sand size material from the process flow stream remaining after step 1, and (3) mechanical dewatering of the remaining high organic content / fine sediments with the aid of polymers. Dewatered sediments from the third step in the process will be stored on-site for a nominal period of 7 days to undergo additional evaporative drying to enhance material handling characteristics and to reduce transportation and disposal costs.

As previously discussed, the first processing step will be to screen the incoming dredge flows to remove any large debris and trash prior to desanding and dewatering. Several types of screening equipment could be utilized for this step in the process including flat...
deck systems and rotating trommel type screens. Oversized material from this process will be collected and disposed off as a separate waste stream. This material is not expected to be suitable for any beneficial uses. It is planned to be disposed of at the County’s landfill.

Following the initial screening step, the remaining dredge material will be processed through a de-sanding unit with the intent of removing sand size materials from the process flow stream. The de-sanding unit should generally consist of dewatering through hydrocyclones to remove water, fine materials, and organics followed by subsequent dewatering of the hydrocyclone underflow to further dewater the material. The screen overflow will generally consist of clean sandy material that can be immediately removed for off-site final disposal / beneficial use. The hydrocyclone overflow and screen underflow from the de-sanding unit will be combined for subsequent polymer treatment, screening, and passive dewatering.

The dredged and dewatered sediment will be transported from the dewatering site to several different sites, depending on its usage. Material that is suitable for beneficial reuse will be transported to sites for the purpose of using it as fill material or agricultural additive. The remainder of the material that is not suitable for reuse will be disposed of at an approved landfill.
2. Objective: Explain how the Best Management Practices (BMPs) in the grant and match funded project will reduce nonpoint source pollution. Include how they will benefit the impaired watershed and/or BMAP or how they will protect the unimpaired watershed.

The best management practices (BMPs) in the grant and match funded project will reduce non point source pollution by physically removing nutrients (phosphorus and nitrogen) associated with the organic sediments in the lake. This will reduce the nutrient release potential from the in-lake nutrient load. As described above the sediments will be removed from the lake and disposed of at off-site locations. This will benefit the waterbody by reducing the available in-lake nutrients from the system, with hopes of ultimately reducing the nutrient and chlorophyll-concentrations in the water column.

3. Effectiveness: Describe how the success of the project will be evaluated, such as monitoring, surveys etc. Provide sufficient detail to indicate which BMPs, will be monitored and how. Note: Monitoring is required for all construction projects.

The effectiveness of this project will be evaluated by pre and post sediment flux analysis to determine the nutrient potential of the in-situ sediment. The pre analysis will be conducted prior to the commencement of the project and the post analysis will be conducted at the completion of the project. The analysis will determine the nutrient release potential of sediments with the preferred method for measuring nutrient flux being incubating sediment core and measuring the nutrients that are released over the incubation time. Sediment core incubations rely on careful sediment extraction, specific volume of overlying water, and nutrient concentration changes in the overlying water. We will develop a standard operating procedure, conduct field collections of sediment cores, conduct laboratory testing, and write a report analyzing the results from the testing. The current estimates of nutrients and sediments removed (shown in Pollutant Load Reductions BMP # 1 Table) were derived from pre-project sediment analysis and will be subject to change based on the sediment flux analysis that tells us how much potentially usable phosphorus and nitrogen was removed from the sediments.

Additionally, Pinellas County’s Ambient Water Quality Monitoring program will conduct its stratified random water quality collection and analysis during the project. This program has been in place and collecting and analyzing data continuously since 2003 (data available upon request). Pre and post dredge data collected from this program can be used to determine the effectiveness of the sediment removal in decreasing nutrient concentrations in the water column.

4. If the grant and match funded project is part of a larger project, describe the overall project. Include the cost of the overall project in the description.

The scope of the overall project is virtually the same as described for the grant portion with the major difference being that our goal is to remove a total of approximately 900,000 CY of organic sediments from Lake Seminole. After the completion of the
dredging portion of the project the Contractor will also restore the dewatering worksite back to the natural state in which it currently resides. The current total project estimate is approximately $28,500,000.00.

5. Project Funding and Timeline for Only the Grant and Committed Match Funded Portions

In the table below, provide the estimated funding amounts and timeline (in months) for each grant and committed match funded step in the project. Examples of typical descriptions have been provided but can be edited as needed.

<table>
<thead>
<tr>
<th>Description</th>
<th>Grant Funding</th>
<th>Match Funding</th>
<th>No. of months to complete task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design, Permitting</td>
<td>N/A (not eligible for grant funds)</td>
<td>$800,000.00</td>
<td>Month 1 to Month 1</td>
</tr>
<tr>
<td>BMP Construction</td>
<td>$2,000,000.00</td>
<td>$1,200,000.00</td>
<td>Month 3 to Month 12</td>
</tr>
<tr>
<td>Education</td>
<td>$0</td>
<td>$0</td>
<td>Month 1 to Month 12</td>
</tr>
<tr>
<td>Monitoring</td>
<td>$0</td>
<td>$0</td>
<td>Month 3 to Month 12</td>
</tr>
<tr>
<td>Reporting</td>
<td>$0</td>
<td>$0</td>
<td>Month 10 to Month 12</td>
</tr>
</tbody>
</table>

Total Number of Months for the Project: 12 months starting in August 2015. (Total number of only the grant and committed match portion).

The sum of the grant and match funded steps should equal the amounts provided on page 1.

6. Additional Information (optional): Include other relevant information (e.g., the presence of protected species at the site).

Lake Seminole is a highly eutrophic lake that is currently listed by the Florida Department of Environmental Protection (FDEP) and the U.S. Environmental Protection Agency (USEPA) as an impaired waterbody pursuant to Section 303(d) of the federal Clean Water Act. The pollutants linked to the impairment are nutrients (phosphorus and nitrogen) that are present at elevated levels in the lake’s water column. The lake is also listed as an Outstanding Florida Water (OFW) and is part of the Pinellas County Preserve.

On a state level, the Florida Watershed Restoration Act (Section 403.067(4)) explicitly allows FDEP to list impaired waters in Category 4 rather than Category 5. Lake Seminole’s listing as a Category 4b water has been approved by both the USEPA and FDEP based on the Lake Seminole Reasonable Assurance Plan (RAP) (2007, updated...
2011 and 2014) and supporting documents, which provides a framework for addressing the Lake Seminole impairment. The Lake Seminole Restoration Project is an important element of the Lake Seminole RAP. The primary purpose of the project is to remove nutrient rich sediments present within the lake that have been linked to its nutrient related impairment.

PART II – ESTIMATED POLLUTANT LOAD REDUCTIONS

This proposal is for a **structural BMP** project.

- Yes No

If the answer is yes then enter the name of the model below and enter the load reductions and event mean concentrations (EMCs) in the Pollutant Load Reduction table.

Name of the model used for determining the load reductions:

If EMCs are not the primary parameter of the model, describe the source and type of the model information.

This proposal is for a **non-structural BMP** project, such as educational outreach, demonstrations, or effectiveness evaluations.

- Yes No

If the answer is but you are unable to fill out the Pollutant Load Reduction table please describe below how the project will reduce pollutant loads.
Pollutant Load Reductions

Enter the loads, reductions and percentages and the event mean concentrations (EMCs) used to determine the pre- and post-loads.

If the grant and match commitment work is part of a larger project:
- Are the reductions for the larger project: Yes **X** No
- Are the reductions for the grant and match committed portion only: Yes No **X**

- = Empty cell/information to be completed

*If the model used more than one EMC per parameter, then enter them in Additional EMCs table along with the corresponding land use.

**Note that TP, TN and Sediment were changed to lbs from lbs/year as this will be a one-time removal

BMP #1 Name: Lake Seminole Restoration Project

<table>
<thead>
<tr>
<th>BMPs Installed</th>
<th>TSS lbs/yr</th>
<th>TP** lbs</th>
<th>TN** lbs</th>
<th>Sediment lbs</th>
<th>BOD lbs/yr</th>
<th>Other lbs/yr</th>
<th>Other lbs/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pre-Project</td>
<td>-</td>
<td>77</td>
<td>444</td>
<td>845,198,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Post-Project</td>
<td>-</td>
<td>23</td>
<td>133</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Load Reduction</td>
<td>-</td>
<td>54</td>
<td>311</td>
<td>845,198,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>% Reduction</td>
<td>-</td>
<td>70%</td>
<td>70%</td>
<td>100%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

BMP #2 Name:

<table>
<thead>
<tr>
<th>BMPs Installed</th>
<th>TSS lbs/yr</th>
<th>TP lbs/yr</th>
<th>TN lbs/yr</th>
<th>Sediment lbs/yr</th>
<th>BOD lbs/yr</th>
<th>Other lbs/yr</th>
<th>Other lbs/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pre-Project</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Post-Project</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Load Reduction</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>% Reduction</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

BMP #3 Name:

<table>
<thead>
<tr>
<th>BMPs Installed</th>
<th>TSS lbs/yr</th>
<th>TP** lbs</th>
<th>TN** lbs</th>
<th>Sediment lbs/yr</th>
<th>BOD lbs/yr</th>
<th>Other lbs/yr</th>
<th>Other lbs/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pre-Project</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Post-Project</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Load Reduction</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>% Reduction</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

TOTALS

<table>
<thead>
<tr>
<th>BMPs Installed</th>
<th>TSS lbs/yr</th>
<th>TP** lbs</th>
<th>TN** lbs</th>
<th>Sediment lbs</th>
<th>BOD lbs/yr</th>
<th>Other lbs/yr</th>
<th>Other lbs/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Project</td>
<td>-</td>
<td>77</td>
<td>444</td>
<td>845,198,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Post-Project</td>
<td>-</td>
<td>23</td>
<td>133</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Load Reduction</td>
<td>-</td>
<td>54</td>
<td>311</td>
<td>845,198,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>% Reduction</td>
<td>-</td>
<td>70%</td>
<td>70%</td>
<td>100%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Additional EMCs
Use this table if there is more than one EMC used per parameter. Add rows as needed.
- = Empty cell/information to be completed

BMP #1

<table>
<thead>
<tr>
<th>Land Use</th>
<th>TSS</th>
<th>TP</th>
<th>TN</th>
<th>Sediment</th>
<th>BOD</th>
<th>Other</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

BMP #2

<table>
<thead>
<tr>
<th>Land Use</th>
<th>TSS</th>
<th>TP</th>
<th>TN</th>
<th>Sediment</th>
<th>BOD</th>
<th>Other</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

BMP #3

<table>
<thead>
<tr>
<th>Land Use</th>
<th>TSS</th>
<th>TP</th>
<th>TN</th>
<th>Sediment</th>
<th>BOD</th>
<th>Other</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
PART III – ADDITIONAL REQUIRED INFORMATION

1. Does the applicant or partner providing at least 10% match have a dedicated stormwater utility fee or other recurring dedicated fee?
 a. (Yes) (No) If yes, state the monthly fee:
 Pinellas County assesses a surface water utility fee to unincorporated properties with impervious surfaces. Each property is assessed based on the impervious area on the property, with each Equivalent Residential Unit (ERUS) of 2,339 sq ft of impervious currently billed $116/yr. The fees are collected as a non-ad valorem assessment on the property tax bill.

2. What are the estimated residence times of any ponds, swales, etc. Add rows as needed.
 This section is not applicable for our project

<table>
<thead>
<tr>
<th>Associated Type of Structure</th>
<th>Estimated Residence Time (in days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Does the project utilize innovative technologies/BMPs? For example, stormwater projects that include an extensive treatment train such as a combination of retention ponds, exfiltration trenches, swales, etc., will be considered more innovative than projects that install a single BMP.
 Yes ☐ No ☐ If yes, please explain how the BMPs are innovative.
 The BMPs for this project are innovative in that they will utilize cutting edge dredging and dewatering technologies to complete the project. The dredge barge itself will be outfitted with real-time GPS tracking systems to monitor both horizontal and vertical positioning of the dredge cutter head. The dewatering processes utilized in this project will have to be advanced enough to provide soil separation and drying capabilities on a work site with a very limited footprint. Due to the project site footprint limitations older dewatering technologies like settling ponds or dewatering bags are not feasible.

4. Is the project located in or does it benefit any of the following areas (check all that apply):
 a. ☐ At least 51% of the project’s benefit is received by a special designation area including Empowerment Zone, Enterprise Community, Champion Community, Area of Critical State Concern, HUD-designated Renewal Community Rural Area of Critical Economic Concern, Rural Economic Development Initiative (REDI) community, Florida Enterprise Zone, or Front Porch Community. If yes, which one(s)?
 b. ☐ At least 51% of the project’s benefit is received by an area with median income at 50% or less of the area’s median income.
 c. ☐ At least 51% of the project’s benefit is received by an area with median income between 80% and 50.1% of the area’s median income.
5. If this is an agricultural BMP check the following that apply:
 a. □ The project is supported by both state and local grower associations.
 b. □ The project complements an existing BMP project or USDA program.

6. Are the activities in this project required under a permit or does it implement permit application requirements (e.g., MS4, federal permit).
 □ Yes □ No If yes, explain; the project may be ineligible for the 319 grant award.

7. Do you have any other pending applications, for state or federal funding, for this project.
 □ Yes □ No If yes, describe.
PART IV – ATTACHMENTS AND REFERENCES

List the file names for all attachments that are included with this application (such as maps, design plans, etc.), a description of what the attachment contains, and the total number of attachments submitted, including the application.

Filename: Lake Seminole RAP
Description: Lake Seminole Reasonable Assurance Plan

Filename: Lake Seminole Watershed Management Plan
Description: 2001 Lake Seminole Watershed Management Plan

Filename: Lake Seminole Restoration Project 100% Plans
Description: Lake Seminole Restoration Project construction plans

Filename: Lake Seminole ERP #
Description: Lake Seminole Restoration Project ERP Permit

Total Number of Files Submitted (include the application in the total #) ___5___

Cite References (if applicable):
INTENT TO APPLY FOR A GRANT

Internal Notification Form
Send to Katherine Burbridge, AICP, Office of Management and Budget
Phone: 453-3457 e-mail: kburbridge@pinellascounty.org

<table>
<thead>
<tr>
<th>Department Point of Contact Information/ Project Manager</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Rob Burnes</td>
<td>Date: 3/16/15</td>
</tr>
<tr>
<td>Phone: 727-453-3149</td>
<td>E-mail: rburnes@pinellascounty.org</td>
</tr>
<tr>
<td>Department: Public Works</td>
<td></td>
</tr>
</tbody>
</table>

Grant Funding Program and Administering Agency Information

Funding Agency: FDEP
Grant Funding Program Name: 319(h) Grant Funding

Grant Funding Type: Formula [] Capital [X] Project [] Other []
Does the grant require expending funds for an reimbursement award: Yes [] No [X]
Grant Funding Program Funding Cap ($) = 2,000,000.00
Required Match Amount and Type: $ 2,000,000.00 Design and Construction

Administering Agency Contact Information

Name: Holly Powless
Approval: Holly.Powless@dep.state.fl.us

Administering Agency Address:
Nonpoint Source Management Section
2600 Blair Stone Road, MS 3570
Tallahassee, Florida, 32399-2400

Granting Funding Proposal Project Information

Project Title: Lake Seminole Restoration Project
Anticipated Funding Amount ($) = 2,000,000.00
Anticipated Match Amount/Match Source: $ 2,000,000.00 Design and Construction

Is the proposal submitted for a different agency?
If so, what agency?
Proposal Abstract:
The proposal for this grant is to fund the beginning of the Lake Seminole Restoration Project, more specifically the mobilization, grub and clearing, dewatering site set up, and the initial 200,000 CY yards of dredging sediments from the lake.

Type of Submission and Submission Deadline

Concept Paper Deadline (If applicable):
Grant Application Deadline: April 17, 2015
Source of Notification of Grant Solicitation (please check)
- [X] Administering Agency
- [] eCivis:
- [] Other: Please provide source:

Submit your “Intent to Apply” as early as possible.
For your files:
OMB’s has no objection for the department to submit a grant application to Florida Department of Environmental Protection to obtain funding to start the Lake Seminole Restoration Project’s mobilization, grub and clearing, dewatering site set up, and the initial 200,000 Cubic Yards of dredging sediments from the lake.

- Florida Department of Environmental Protection 2014 Clean Water Act Section 319(h) Nonpoint Pollution Source Grant Program [Regular Cycle], for $2.0 Million – A County match is required and 40% of the planning, engineering, and design activities’ costs for the Lake Seminole CIP project (#000157A) can be used. Total grant project cost is at least $2.8 Million. The total CIP project is estimated to be $17.0 Million.

The Board of County Commissioners signs off on this application. If you have any questions, please do not hesitate to contact me.

Katherine

Katherine Burbridge
Pinellas County Office of Management and Budget
(727) 453-3457
kburbridge@pinellascounty.org
All government correspondence is subject to the public records law.

From: Burbridge, Katherine A
To: Burnes, Robert M
Subject: RE: Lake Seminole Restoration Project 319(h) Grant
Date: Tuesday, March 17, 2015 12:27:04 PM

For your files:
OMB’s has no objection for the department to submit a grant application to Florida Department of Environmental Protection to obtain funding to start the Lake Seminole Restoration Project’s mobilization, grub and clearing, dewatering site set up, and the initial 200,000 Cubic Yards of dredging sediments from the lake.

- Florida Department of Environmental Protection 2014 Clean Water Act Section 319(h) Nonpoint Pollution Source Grant Program [Regular Cycle], for $2.0 Million – A County match is required and 40% of the planning, engineering, and design activities’ costs for the Lake Seminole CIP project (#000157A) can be used. Total grant project cost is at least $2.8 Million. The total CIP project is estimated to be $17.0 Million.

The Board of County Commissioners signs off on this application. If you have any questions, please do not hesitate to contact me.

Katherine

Katherine Burbridge
Pinellas County Office of Management and Budget
(727) 453-3457
kburbridge@pinellascounty.org
All government correspondence is subject to the public records law.

From: Burnes, Robert M
Sent: Tuesday, March 17, 2015 9:25AM
To: Burbridge, Katherine A
Subject: Lake Seminole Restoration Project 319(h) Grant

Katherine,

Please see the revised package.

Thanks,

Robert Burnes, M.S.
Senior Environmental Scientist
Watershed Management
Department of Environment and Infrastructure
22211 US Hwy 19, Bldg 10
Clearwater FL, 33756
Phone (727) 453-3149
Fax (727) 464-4403
rburnes@pinellascounty.org

Follow Pinellas County: